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Magnetisation discontinuity of the two-dimensional Potts 
model 

R J Baxter 
Research School of Physical Sciences, Australian National University, Canberra ACT 
2600, Australia 

Received 14 April 1982 

Abstract. The q-state two-dimensional ferromagnetic Potts model has a first-order transi- 
tion for q >4, its spontaneous magnetisation having a jump discontinuity. The magnitude 
of this discontinuity is calculated exactly for the square, triangular and honeycomb lattices: 
it depends only on q and is the same for all three lattices. 

1. Introduction and summary 

Kim (1981) has considered the jump discontinuity AM in the spontaneous magnetisa- 
tion of the two-dimensional q -state Potts model. (A definition of AM is given in P 2 
of this paper.) He evaluated the first six terms in a series expansion of AM in powers 
of 4-', obtaining 

h M = 1 - q - ' - 3 q - 2 - 9 q - 3 - 2 7 q - 4 - 8 2 q - 5 - .  . . . (1) 
These terms are the same for the square, triangular and honeycomb lattices, so Kim 
conjectured that AM is the same for these three lattices. Here it will be shown that 
this 'universality' property is a consequence of the star-triangle relation and is true 
even for anisotropic models. It will also be shown that AM can be evaluated exactly 
by using corner transfer matrices. The result is 

a2 m 

AM= n [ ( 1 - X 2 n - 1 ) / ( 1 + X 2 n ) ] =  n [(1-xn)/(1-x4n)], 
n = l  n = l  

where, for q > 4, x is defined by 

4 = x  +2+x-', O c x c l .  (3) 
It is straightforward to verify from (2) and (3) that Kim's large-q series (1) is 

correct. To investigate the behaviour near q = 4, one can use the mathematical identity 

n = l  n = l  

which is true for all complex numbers z with positive real part. Setting 

( 5 )  
-213 x = e  , 
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it follows that 
00 

M= 2 exp[-(402+ .rr2)/160] [l -exp(-27r2n/O)]/[1 -exp(-.rr2n/28)]. (6) 

M -2  exp[-.rr2/8(q -4)’’2]. (7) 

n = l  

Thus M decreases from 1 to 0 as 4 decreases from 0;) to 4, and near q = 4, 

This result agrees with the renormalisation group calculation of Cardy et a1 (1980, 
equation (3.21)). 

2. Definitions 

The zero-field ferromagnetic Potts model on an arbitrary lattice 2 has Hamiltonian 

where for each site i there is a ‘spin’ ui, with values 1 , 2 , .  . . , q. The summation is 
over all edges (ij) of 2, and each Jij is a positive real number. 

The partition function is 

Z = E  exp(-X/kT), 
c 7  

where k is Boltzmann’s constant, T is the temperature, and the summation is over 
all values of all the spins. Thus if 2 has N sites, there are q N  terms in this summation. 

Consider some particular site and choose i = 0 thereat. The probability that the 
spin uo will have value 1 is 

(10) @(go, 1)) = Z - ’  E S ( u o ,  1) exp(-X/kT). 
U 

In terms of this we can define a ‘local magnetisation’ 

M=[q(S(uO, 1))-11/(q-1)* (11) 

The Hamiltonian (8) has the symmetry property that it is unchanged by increment- 
ing every spin by one (modulo q). Provided the boundary conditions do not break 
this symmetry, it follows that all q states of any particular spin are equally likely, so 
that 

(S(U0, l ) )=q- l ,  M = 0 .  (12) 

However, let us fix all boundary spins to be in state 1. Then M will be positive 
for any finite lattice. If we then take the thermodynamic limit of a large lattice, in 
such a way that site 0 lies deep inside the lattice, infinitely far from the boundaries, 
then we might expect that M would be insensitive to the boundary conditions, so that 
we would regain the symmetry property (12). 

For sufficiently high temperatures, precisely this happens; but if T is less than 
some critical value T,, then the effect of the boundary conditions persists even in this 
limit, and M is strictly positive. The symmetry is ‘spontaneously broken’. 

Further, if q is sufficiently large (greater than 4 in two dimensions), then the 
transition at T = T, is first order: M jumps d’iscontinuously from zero to a strictly 
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positive value, so that 

M=Ofor  T > T , ,  M>Ofor T s T , .  (13) 
Writing M as a function M ( T )  of T, it follows that at T, it has a jump discontinuity 

AM = M ( T , )  = lim- M ( T ) .  (14) T-T, 

This is the AM discussed by Cardy et a1 (1980) and Kim (1981). For a translation- 
invariant lattice model, it is independent of the position of site 0, provided of course 
that the site is infinitely far from the boundaries. 

3. Universality 

Kim (1981) rightly conjectured that AM was the same for the square, triangular and 
honeycomb lattices. As will now be shown, this is a consequence of the star-triangle 
relation. 

We can adapt the king model argument of Baxter and Enting (1978), hereinafter 
referred to as BE. We replace the king model therein by a Potts model, allowing all 
spins ai to take the values 1,. . . , q. We still start by considering an anisotropic 
honeycomb lattice model of 2 N  sites, but now the interaction energy of an edge (i, I) 
is -k7ZrS(ai,  a*). Here r takes the values 1 , 2 , 3  according to the direction of the 
edge (i, I). If J, is the value of the .Til in (8), then 

L, = J,/kT, r = 1 , 2 , 3 .  (15) 
We can regard L1, Lz, L3 as dimensionless interaction coefficients. 

Now we consider a star i,;, k ,  1, 1 being the centre site, as in figure 1 of BE. We 
attempt to equate its Boltzmann weight (summed over or) to that of a triangle i,;, k 
with dimensionless interaction coefficients K1, K2, K3. We are free to introduce also 
a normalisation factor R, so we obtain the equation 

1 exp[LiS(pi, ~ [ ) + ~ 2 S ( u j ,  aO+L3S(ak, ai)] 
U1 

We want this star-triangle relation to be true for all values of ai,uj,ak. By 
considering the cases when they are all equal, two are equal, or none are equal, we 
find that (16) is equivalent to the five equations 

q - 1 + z iz;,?; = RZlZ.ZZ3, q - 2 + ~ ;  + z ; z ;  = R z ~ ,  q - 2 + ~ ;  + z ; z ~  = R z ~ ,  

q - 2 + ~ 4  + z ; z ;  = R z ~ ,  q - 3 - t ~ ;  + z ;  + z ;  E R ,  (17) 

z j  = exp(Ki), z :  = exp(Lj) (18) 

(19) 

where 

for ; = 1 ,2 ,3 .  We shall use the variables 
U! = z !  - 1. 

I 1  
U .  = z .  - 1 

1 1 ,  

Eliminating R, zl, Z Z ,  z3 between the equations (17) leaves the relation 

q2+q(u’l + U ;  + U ; ) = U ; v ; u ; .  (20) 
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Thus we can only apply the star-triangle relation to the honeycomb lattice Potts model 
when the interaction coefficients satisfy (20). Kim and Joseph (1974) and Baxter et 
a1 (1978) have shown that this is precisely the condition for the ferromagnetic model 
to be critical, i.e. for the temperature T to have its critical valub T,. This is the case 
we consider in this paper in our study of AM = M(T,) .  The free energy, internal 
energy and latent heat of the two-dimensional critical Potts model have already been 
calculated (Baxter 1973, Baxter et a1 1978, Baxter 1982a, b). 

The last relation in (17) corresponds to q, gj, (Tk all being different. For the Ising 
model case, when q = 2, this cannot occur, so this relation disappears. We then no 
longer have (20), so the star-triangle relation can be applied to the Ising model for 
all temperatures T. However, here we are interested in arbitrary values of q, so can 
only consider the critical case T = T,. 

Comparing the last equation in (17) with (20), it is readily seen that R =q- 'u ;u ;u$ .  
Subtracting the last equation in (17) from each of the middle three, it follows that 

uju: =q,  j = 1 ,2 ,3 .  (21) 

U 1 U Z U ~ + U Z U 3 + U 3 U l f U 1 U Z  = q ,  (22) 

Thus (20) implies that 

which is a constraint on the interaction coefficients Kl, KZ, K3.  Indeed, if the star- 
triangle relation is applied to all the N down-pointing stars of the honeycomb lattice, 
the effect is to convert the model to a Potts model on the triangular lattice, with 
interaction coefficients K1, KZ, K 3 ,  and with an extra factor R multiplying the partition 
function. Thus we are restricted to considering only triangular lattice models that 
satisfy (22), and again this is the condition for criticality. 

Alternatively, it is shown in BE how we can successively use the star-triangle 
relation to convert the honeycomb lattice model to one on a lattice with a large central 
square-lattice region, having horizontal and vertical edge interaction coefficients K 3  
and L3.  These are not arbitrary, but satisfy (21), i.e. u3u;  = q, which is the criticality 
condition for the square lattice Potts model. 

All these transformations leave unchanged the spin on site i in figures 1 and 2 of 
BE. This spin is deep inside the lattice and we can fix the top and bottom boundary 
spins to have value 1. (The transformations do modify the boundary conditions, but 
by using row-to-row transfer matrices we can argue that these modifications should 
not affect the present argument.) The factors R affect the partition function, but 
cancel out of the correlation (10). It follows that @(vi, 1)) must have the same value 
for all three lattices. Thus 

(23) 
where the three AM are evaluated for the honeycomb, triangular and square lattices, 
respectively. 

We can regard q as given, Lz and L3 as independent variables, and L I  as defined 
by (20). Then the honeycomb lattice AM is a function of L z  and L3.  From (23), 
using the fact that K 3  is determined from L3 by (21), it follows that AM is independent 
of Lz. By symmetry it must also be independent of L3.  Thus 

( M ) L I , L ~ , L ~  = ( w ) K i l K 2 . K 3  = ( M ) K 3 , L 3 9  

AM = function only of q, (24) 
being the same for the honeycomb, triangular and square lattice critical ferromagnetic 
Potts models. 
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3.1. Further generalisations 

This result can be further generalised, e.g. to some special inhomogeneous lattice 
models, by using the concept of ‘Z-invariance’ (Baxter 1978), applying it to the Potts 
model rather than the eight-vertex model. We shall not need such generalisations 
here, but let me briefly remark that this can be done by allowing the spins (TI to take 
the values 1 , .  . . , q and replacing the definition of X in equation (2.1) of Baxter 
(1978) by 

+X= [ I Y P A R s ( ~ ~ , ( T , ) + K R A O S ( ~ ~ ,  u p ) ] .  (25) 

Then 2 is the Hamiltonian of two Potts models, one on the shaded faces of the 
straight-line lattice in figure 1 of Baxter (1978), the other on the unshaded faces. The 
relation (4.3) of that paper then factors into two identical star-triangle relations. 
Provided these are satisfied for all triplets of straight lines, one can repeat the argument 
of pp 324-6 therein and establish as an analogue of (5.1) that @(U!, 1)) is a function 
only of q, for any face 1 deep within the straight-line lattice. 

4. Dichromatic poiynomiai 

Because of (24), we can without loss of generality now restrict attention to a square 
lattice Potts model with horizontal interaction coefficient K and vertical interaction 
coefficient L, satisfying the ferromagnetic criticality condition 

(eK - l)(eL - 1) = q. 
Setting 

(27) 

~ = C ~ [ ~ + ~ S ( ( T ~ , ~ ~ ~ . ) I I I [ ~ + W S ( ( T ~ , ( T L ) I ,  (28) 

L v = e K -  1, w = e  -1, 

we can write the partition function (9) as 

U 

where the first product is over all horizontal edges ( i ,  j ) ,  the second is over all vertical 
edges ( i ,  k ) .  

We can write 2 as a dichromatic polynomial (Kasteleyn and Fortuin 1969, Baxter 
1973, Baxter et a1 1976). Expand the products in (28), and draw a line on the 
corresponding edge of the lattice if one takes the uS(ai, aj) or wS(vi, (+k) term corres- 
ponding to that edge, no line if one takes the term unity. Then there is a one-to-one 
correspondence between all graphs G on the lattice, and terms in the expansion. For 
each term the u-summations can be performed. Remembering that every boundary 
site j is fixed to have uj = 1, we find that 

Z = C q C u l w m ,  (29) 
G 

where the summation is over all graphs G (i.e. ways of drawing lines on the edges of 
the lattice), 1 is the number of horizontal lines, m is the number of vertical lines, and 
C is the number of connected components (including isolated sites) not containing 
any boundary sites. 

We can regard the boundary sites as connected, and can regard them, and all sites 
connected to them, as forming the ‘boundary cluster’. Then C is the number of 
connected components of G, not including the boundary cluster. 
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Applying the same procedure to the numerator in (lo), we have to distinguish 
between graphs in which site 0 is connected to the boundary, and those in which it 
is not. We find that 

(S(ao, l ) )=P+q- ' ( l -P) ,  (30) 

p = 2 - 1  1' qCv'w" (31) 

where 

G 

and the prime means that the summation is restricted to graphs in which 0 is connected 
to the boundary. 

Substituting (30) into (ll), we obtain 

M = P .  (32) 

Thus the zero-field magnetisation of the Potts model is the same as the 'percolation' 
probability that site 0 belongs to the boundary cluster (Kelland 1976). 

5. Six-vertex model 

Having converted the Potts model to a dichromatic polynomial problem, we now 
transform the latter to a six-vertex model. 

The procedure for 2 is given by Baxter et a1 (1976). First turn the Potts model 
lattice 9 through 45" so that K is the interaction coefficient for SW-NE edges, L for 
SE-NW edges. Take this to be the lattice of broken lines and open circles in figure 1. 

Figure 1. The Potts model lattice P (open circles and broken lines) and the corresponding 
six-vertex lattice P' (full circles and lines). The lower-right quadrant, corresponding to 
the 2" x 2" corner transfer matrix A, is shown shaded. In this figure m = 3. 

Remembering that the boundary sites are to be regarded as forming a cluster, but 
this cluster is not counted in the C of (29), we find that 

z = q"-2"2 Z6V9 (33) 
where N is the number of sites of 9, and z 6 V  is the partition function of a six-vertex 
model on the lattice 9' of full lines and circles. 
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As usual (Lieb 1967), this six-vertex model is obtained by placing arrows on the 
edges of the lattice so that at each site (or ‘vertex’) there are as many in-pointing 
arrows as out-pointing ones. 

The sites of 9’ are either two-valent (i.e. have two neighbours), or are four-valent. 
The former occur on the outer perimeter of 9’: if an observer following the arrows 
turns to his left as he goes through such a site, then the site is given a Boltzmann 
weight exp(8/4); if he turns to the right, it is given a weight exp(-8/4). The parameter 
8 is defined by (3) and ( 5 ) ,  so that 

q ”* = 2 cosh 8, e >o. (34) 
The four-valent sites of 9’ are of two types: those lying on SW-NE edges of 2, 

and those on SE-NW edges. Of these, the outermost ones lie on boundary edges of 
9, while the rest lie on internal edges. At each site there are six possible configurations 
of arrows. Arranging them as in Lieb (1967) and Baxter (1973), we assign to them 
Boltzmann weights 

01,. . . ,06=a,a ,  b, b ,as+bs-’ ,as-’+bs,  (35) 

s = exp(e/2) (36) 
and a, b have the values given in table 1. Then the six-vertex model partition function 
is 

where 

Z ~ V  = I1 (weights), (37) 
where the sum is over all allowed ways of placing arrows on the edges of LE”, and for 
each such arrangement the product is of the Boltzmann weights of all the sites. 

Table 1. Values of a and b in (35) for the four types of edges of the lattice 9, and for 
the corresponding sites of 2’. 

SW-NE Internal q-l/2v 1 

SE-NW Boundary 0 q - 1 / 2  

-112 
0 Boundary q -112 SW-NE 

SE-NW Internal 1 4 w  

Kelland (1975) has shown that one can also express the percolation probability P 
in terms of the six-vertex model. Take 0 to be the centre site of the lattice 9 in figure 
1. Label the horizontal edges of 2” that are directly beneath 0 as 1 , .  . . , m, as in 
figure 1. Note that m must be odd. Let al, . . . , a, be the ‘arrow spins’ on these 
edges: ai = +1 if the arrow on edge j points to the right, aj = -1 if the arrow points 
to the left. Write a for {a1,. . , , a,} and introduce the function 

and its expectation value 

(s(a))=26;: s ( a )  n(weights). (39) 
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As is shown in Baxter et al (1976), the dichromatic polynomial (29) can be written 
as a sum over polygon decompositions of 3’. Each connected component of G is 
surrounded by a polygon, and so is each circuit. In particular, since the boundary 
sites of 2’ are connected, there is always a polygon on the perimeter of 2”. The 
six-vertex model arrows follow one another sequentially round each polygon: if the 
arrows go anticlockwise, then the polygon is given a weight exp(f3); if clockwise, a 
weight exp(-f3). 

If the site 0 is connected to the boundary sites, then only the perimeter polygon 
can surround 0. Every other polygon must include an even number of the edges 
1 , .  . . , m - 1 of 2”, and for every polygon arrow covering there must be as many 
right-pointing arrows on these edges as there are left-pointing arrows. Thus 
al+. . .+am-1 = O  and s(a) = 1. 

On the other hand, if site 0 is not connected to the boundary then there must be 
at least one polygon (in addition to the perimeter polygon) surrounding it. This will 
include an odd number of the edges 1,. . . , m - 1. If the arrows go anticlockwise 
round this polygon, then there will be one more right-pointing arrow on the edges 
1, . , . , m - 1 than left-pointing ones. The corresponding contribution to the sum in 
(39) therefore contains not only the weight factor exp(f3), but also a factor exp(-f3 - 
&T) coming from s ( a ) .  The combined weight is therefore exp(-&.rr). Conversely, if 
the arrows go clockwise round the polygon, we obtain a combined weight exp($.rr). 
Summing these gives 2 cosh($.rr) = 0. 

It follows that the sum in (39) is the same as the primed sum in (31), and hence that 

M = P  = (s(a)). (40) 

5.1. Corner transfer matrices 

We can express ( ~ ( a ) )  in terms of corner transfer matrices (Baxter 1980, 1981). In 
figure 1 is shown the ground-state energy configuration of arrows on 2’. This 
configuration is ‘staggered’, the arrows alternating in direction from edge to edge. 

For each edge r of 9, we can define a ‘staggered arrow spin’ p, such that p,  = +1 
if the arrow on edge r has the same direction as in figure 1, while pr = -1 if it has 
the opposite direction. Then for the horizontal edges labelled 1 to m in figure 1, we 
see that 

p r  = ( - l ) r a r ,  r =  1,.  . . , m. (41) 

In figure 1 we have labelled as l‘, 2‘, . , . , m‘ the m vertical edges directly to the 
right of 0. Let p i, . , . , p h be the corresponding staggered arrow spins. Write p for 
{pl, . . . , pm},  and p ’  for . . . , p k } ,  and let A,,, be the partition function of the 
six-vertex model for the lower-right quadrant of 9, i.e. 

Aww, = 1 (weights), (42) 
where the product is over all sites in the lower-right quadrant and the sum is over all 
allowed coverings of the adjacent edges, the arrows on the labelled edges in figure 1 
being fixed to have spins p1, . . . , p h. If there is no allowed covering that is consistent 
with this choice of the labelled edge arrows, then A,+, = 0. 

Similarly, let p”(p”’) be the staggered arrow spins on the edges directly above (to 
the left of) 0, and define B,,,,, for the upper-right quadrant, C,t,,r,p for the upper-left, 
and Dw>,,,, for the lower-left. Then by factoring the product in (37) into four terms, 
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one for each quadrant, and summing over arrow coverings of edges within each 
quadrant, we obtain 

Obviously, we can regard A,,, as the element (p,  p ' )  of a 2" x 2" matrix A, and 
similarly for B, C, D. We can then write (43) as 

2 6 "  = Tr ABCD. (44) 

Let S be the diagonal 2" x 2" matrix whose entries are the s(a) given by (38) and 
(41), i.e. its entry in position (p, p )  is 

s,, = exp[(@ +$.rr)g(p)l, 

where 

g ( p ) = F l - p 2 + p 3 - -  e - w m - 1 .  

Then (39) can be written in the simple form 

(s ( a ) )  = Tr SABCD / Tr ABCD. 

(45) 

(46) 

(47) 

The ice rule ensures that there should be as many left-pointing arrows on the 
edges 1 , .  . . , m as there are down-pointing arrows on l', . . . , m'. Since m and m' 
both lie on the perimeter polygon, pm = pk .  It follows that g ( p )  = g ( p ' ) ,  and hence 
that S commutes with A .  Similarly, S commutes with B, C, D. We can readily establish 
the symmetry relations 

A = C = A T =  CT, B = D = B ~ = D ~  (48) 

M = Tr S(AB)' / Tr (AB)'. (49) 

so from (40) and (47) it follows that 

6. Thermodynamic limit 

The equivalences of 0 9  4 and 5 are exact even for finite lattices, and do not depend 
on the criticality condition (26). 

Let us now use (26), i.e. uw =q. From table 1, this implies that the ratio a / b  is 
the same for all internal sites of 3, having the value 

Apart from trivial renormalisations of wl, , . . , 0 6 ,  it follows that these weights are 
the same for all internal sites of Y,  so that the six-vertex model is homogeneous. 

Further, there must be as many vertices of type 5 as there are of type 6 ,  being 
sources and sinks, respectively, of vertical arrows. We can therefore multiply all 
weights w 5 ,  and divide all weights 0 6 ,  by [(x +s')/(xs*+ l)]"'. This leaves (37) and 
(39) unchanged, but the weights of the internal sites are now given, not by (35), but 
by 

0 1  , . . .  , 0 6 = a , a , b , b , c , c ,  (51) 
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where 

c = [a’+ b’ + 2ab cosh O]l’’. (52) 

We can now regard the corner transfer matrices A,  B,  C, D as defined by (42), 
using the weights given by (51), with a /b  = x .  Apart from boundary conditions, the 
model is now the homogeneous zero-field six-vertex model. This is a special case of 
the zero-field eight-vertex model, for which the diagonal forms of A, B, C, D have 
been calculated (Baxter 1980, hereinafter referred to as 8V) in the thermodynamic 
limit. 

We can use these results to evaluate (49), but we have to translate from our 
‘electrical’ terminology of arrows on edges to the ‘magnetic’ terminology of Ising spins 
on faces. Take the arrow ground state of figure 1 to correspond to the ferromagnetic 
ground state (all spins up) of 8V. Write K 8 V ,  L 8 V ,  M 8 V  for the K ,  L,  M of 8V. We 
can relate these to our weights a, 6, c by using the Ising spin formulation of the 
eight-vertex model (Kadanoff and Wegner (1971): since we are using the staggered 
arrow state of figure 1 as a reference, their a, 6, c, d correspond to our c, 0, a, 6). We 
find that 

U :  b :  C :  O=eXp(&v-Lgv-M8~): eXp(-Kgv+L8~-M8v): 

e x p ( & v + L ~ + M g ~ ) :  ~xP( -K~v-Lw+MBv) .  (53) 

Using equations (3.15) and (3.11) of 8V, it follows that the parameters q, A, U therein 
are given by 4 = 0 and 

a : b : c  =sinh(A-u):sinhu:sinhA. (54) 

From (52), it follows that 

A = O .  ( 5 5 )  

The king spins (T~ ,  v’, . , . in (4.37) of 8V are related to our arrow spins p1, p ~ ,  . . . 

PUI = U r v r + 1 .  (56) 

In the limit of a large lattice, i.e. when m is large, it is shown in 8V that the matrices 
A and B commute, so can be simultaneously diagonalised. From (4.30) and (4.37) 
of 8V (adapted to our boundary conditions), they then have diagonal entries 

(57) 

by 

A,, = a exp[tUh (CL 11, B,, = P exP[t(o - 2.4 )h  (CL )I 
where a and p are scalar factors (independent of k ) ,  and 

. .+ (m -2)pm-2pm-1+(m - 1 ) g m - i - C L m .  ( 5 8 )  

(This result is exact in the sense that it correctly gives the r largest eigenvalaes of 
ABCD, in the limit when we hold r fixed and let m + a. For any r there is an integer 
p ,  independent of m, such that these eigenvalues are given by (57) and ( 5 8 ) ,  with 
p p  =  CL^+^ = . . . =  CL,,,-^ = +l. Our boundary conditions are such that km plays a special, 
rather trivial, role, being the arrow spin of the perimeter polygon.) 

The matrix S is unaffected by the similarity transformation that reduces A,  B to 
the diagonal form (57). We can therefore use these diagonal forms, together with 
(45), in the expression (49) for the zero-field magnetisation M. WritingM as a function 
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M ( T )  of T, and remembering that the results of this section apply only for T = Tc, 
it follows that 

W ~ = C  exp[(e + f i n ) g w + e w l / C  e x p t e w ~ ,  (59) 
IL 

both summations being over all values (+1 and -1) of p l ,  . . . , pm. Note that a, p 
and U have all cancelled out of (59), so that M(T,) is a function only of 8, i.e. of q, 
in agreement with (24) and (14). 

The denominator in (59) is readily calculated and is found to be 
m-1 

j= l  
exp[4(mz-m +2)e](i + x )  fl (I+x'), 

where x is defined by ( 5 ) .  The numerator is calculated inductively in the Appendix: 
it is 

exp[$(m2-m +2)e](i+x) fl (1-x4'-'). (61) 

Substituting these expressions into (59) and rearranging the products, it follows that 

M ( T c ) =  I7 [(l-xzj-1)/(l+x2~)]. (62) 

(m-1)/2 

i=1 

(m--1)/2 

i-1 

Taking the limit m + 00, and using (14), we obtain the result given in equation (2). 

Appendix 

Performing the summation over pm, the numerator of (59) can be written as 

2 cosh 8Rm-1(+), 

where, for all positive integers n, 

the outer summation being over all values (+1 and -1) of p1, . . . , pn. 
One can immediately establish the recursion relation 

~ , ( c r )  = E  exp[(e +ST)(-)"-'P +neapIR,,-1@), 

the summation being over P = +1 and -1. Together with the initial values 
P 

Ro(+) = Ro(-) = 1, 

this defines R,(+) and I?"(-) for all non-negative integers n .  By direct substitution, 
one can verify that the solution of (A3) is 

Rzp-l(+) = i r ( zp - l "zF  P' RZp-l(--) = 0, Rzp(+) =Fp, Rzp(-) = X2PFP, 

(A4) 

(445) 

where x is defined by ( 5 )  and 
P 

Fp = exp[p(2p + l)6] n (1 -x4'-'). 
i=1 

Remembering that m is odd, we obtain the result (61) for the expression (Al). 
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The arrow configuration shown in figure 1 is the ground-state configuration of the 
six-vertex model, provided T < T,. For T > T,, the ground-state configuration is that 
obtained from figure 1 by reversing all arrows. 

At T = T,, the infinite system, with weights given by (51), is unchanged by reversing 
all arrows. Thus both the above-mentioned configurations are contenders for the 
ground state. However, the boundary conditions are such as to favour the former 
configuration. For this reason, what we have calculated in (59) is the limit of M ( T )  
as T tends to T, from below. 

It is worth noting that we can also easily calculate the limit of M ( T )  as T tends 
to T, from above. To do this, we evaluate the eigenvalues of A and B for the case 
when the second arrow configuration is the ground state. The effect of this is simply 
to negate the spins p l , .  . . , pm-l on the RHS of (58). (The perimeter spin pm plays 
a trivial role, merely contributing a factor 2cosh 8 to both the numerator and 
denominator of (59): it is irrelevant whether or not we negate km.) This leaves the 
denominator of (59) unchanged, but replaces Rm-l(+) by R,,,-l(-) in the expression 
( A l )  for the numerator. From (A4), this introduces an extra factor x m - l  into (Al) ,  
and hence into (62). Remembering that Ix I < 1, and taking the limit m + CO, it follows 
that 

lim M ( T )  = 0, 
T - T :  

in agreement with (13). 
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